Deep learning and saliency-based parking IoT classification under different weather conditions

Author:

Mago Neeru1,Mittal Mamta2,Hemanth D. Jude3,Sharma Rakhee4

Affiliation:

1. Department of Computer Science and Applications, Panjab University Swami Sarvanand Giri Regional Centre, Hoshiarpur, Punjab, India

2. Delhi Skill and Entrepreneurship University, New Delhi, India

3. Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India

4. Center for Research and Innovation in Interdisciplinary Studies, Bharati Vidyapeeth’s Institute of Computer Applications and Management (BVICAM), New Delhi, India

Abstract

The world’s population is growing at an exponential rate, which has created a slew of new issues in our daily lives. Among these challenges is the difficulty of finding available parking spaces. To overcome this obstacle, an effective system for detecting vacant parking spaces is crucial, particularly in densely populated areas. Even though there are numerous parking detecting systems on the market today, they all have their own set of restrictions. There are primarily two types of parking systems available. The first is a hardware-based system that uses hardware to detect whether a space is vacant or occupied, and the second is a smart parking system that uses cameras to classify parking status. Vision-based parking systems are becoming increasingly popular due to benefits such as flexibility and cost efficiency. However, due to challenging weather conditions and various occlusions caused by objects, such systems are challenging to develop. The limitations of a vision-based parking system must be addressed for it to become more accurate. To date, many researchers have attempted to incorporate deep learning-based parking systems with various algorithms but none of them has focused on reducing the complexity of Convolutional Neural Network (CNN) training through unsupervised pre-processing steps. In this study, an attempt is made to reduce the complexity of CNN by integrating salient features as a pre-processing step for normalizing weather conditions. It has been observed that salient features-based pre-processing makes the system more robust in terms of accuracy and time efficiency.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3