Brain-region specific autism prediction from electroencephalogram signals using graph convolution neural network

Author:

Tigga Neha Prerna1,Garg Shruti1,Goyal Nishant2,Raj Justin2,Das Basudeb2

Affiliation:

1. Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi, India

2. Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, India

Abstract

BACKGROUND: Brain variations are responsible for developmental impairments, including autism spectrum disorder (ASD). EEG signals efficiently detect neurological conditions by revealing crucial information about brain function abnormalities. OBJECTIVE: This study aims to utilize EEG data collected from both autistic and typically developing children to investigate the potential of a Graph Convolutional Neural Network (GCNN) in predicting ASD based on neurological abnormalities revealed through EEG signals. METHODS: In this study, EEG data were gathered from eight autistic children and eight typically developing children diagnosed using the Childhood Autism Rating Scale at the Central Institute of Psychiatry, Ranchi. EEG recording was done using a HydroCel GSN with 257 channels, and 71 channels with 10-10 international equivalents were utilized. Electrodes were divided into 12 brain regions. A GCNN was introduced for ASD prediction, preceded by autoregressive and spectral feature extraction. RESULTS: The anterior-frontal brain region, crucial for cognitive functions like emotion, memory, and social interaction, proved most predictive of ASD, achieving 87.07% accuracy. This underscores the suitability of the GCNN method for EEG-based ASD detection. CONCLUSION: The detailed dataset collected enhances understanding of the neurological basis of ASD, benefiting healthcare practitioners involved in ASD diagnosis.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3