Machine learning-driven predictions and interventions for cardiovascular occlusions

Author:

Thomas Anvin1,Jose Rejath1,Syed Faiz1,Wei Ong Chi2,Toma Milan1

Affiliation:

1. College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA

2. School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore

Abstract

BACKGROUND: Cardiovascular diseases remain a leading cause of global morbidity and mortality, with heart attacks and strokes representing significant health challenges. The accurate, early diagnosis and management of these conditions are paramount in improving patient outcomes. The specific disease, cardiovascular occlusions, has been chosen for the study due to the significant impact it has on public health. Cardiovascular diseases are a leading cause of mortality globally, and occlusions, which are blockages in the blood vessels, are a critical factor contributing to these conditions. OBJECTIVE: By focusing on cardiovascular occlusions, the study aims to leverage machine learning to improve the prediction and management of these events, potentially helping to reduce the incidence of heart attacks, strokes, and other related health issues. The use of machine learning in this context offers the promise of developing more accurate and timely interventions, thus improving patient outcomes. METHODS: We analyze diverse datasets to assess the efficacy of various machine learning algorithms in predicting heart attacks and strokes, comparing their performance to pinpoint the most accurate and reliable models. Additionally, we classify individuals by their predicted risk levels and examine key features that correlate with the incidence of cardiovascular events. The PyCaret machine learning library’s Classification Module was key in developing predictive models which were evaluated with stratified cross-validation for reliable performance estimates. RESULTS: Our findings suggest that machine learning can significantly improve the prediction accuracy for heart attacks and strokes, facilitating earlier and more precise interventions. We also discuss the integration of machine learning models into clinical practice, addressing potential challenges and the need for healthcare professionals to interpret and apply these predictions effectively. CONCLUSIONS: The use of machine learning for risk stratification and the identification of modifiable factors may empower preemptive approaches to cardiovascular care, ultimately aiming to reduce the occurrence of life-threatening events and improve long-term patient health trajectories.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3