Untying black boxes with clustering-based symbolic knowledge extraction

Author:

Sabbatini Federico1,Calegari Roberta2

Affiliation:

1. Dipartimento di Scienze Pure e Applicate (DiSPeA), Università di Urbino, Urbino, Italy

2. Dipartimento di Informatica – Scienza e Ingegneria (DISI), Università di Bologna, Bologna, Italy

Abstract

Machine learning black boxes, exemplified by deep neural networks, often exhibit challenges in interpretability due to their reliance on complicated relationships involving numerous internal parameters and input features. This lack of transparency from a human perspective renders their predictions untrustworthy, particularly in critical applications. In this paper, we address this issue by introducing the design and implementation of CReEPy, an algorithm for symbolic knowledge extraction based on explainable clustering. Specifically, CReEPy leverages the underlying clustering performed by the ExACT or CREAM algorithms to generate human-interpretable Prolog rules that mimic the behaviour of opaque models. Additionally, we introduce CRASH, an algorithm for the automated tuning of hyper-parameters required by CReEPy. We present experiments evaluating both the human readability and predictive performance of the proposed knowledge-extraction algorithm, employing existing state-of-the-art techniques as benchmarks for comparison in real-world applications.

Publisher

IOS Press

Reference43 articles.

1. Survey and critique of techniques for extracting rules from trained artificial neural networks;Andrews;Knowledge-Based Systems,1995

2. Explaining black boxes on sequential data using weighted automata;Ayache;International Conference on Grammatical Inference,2019

3. Using neural network rule extraction and decision tables for credit-risk evaluation;Baesens;Management Science,2003

4. Interpretable hierarchical clustering by constructing an unsupervised decision tree;Basak;IEEE Trans. Knowl. Data Eng.,2005

5. Bertsimas D. , Orfanoudaki A. , Wiberg H.M. , Interpretable clustering via optimal trees, CoRR, abs/1812.00539, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3