Buffeting response analysis – the stack state-space approach

Author:

Stoyanoff Stoyan1,Taylor Zachary2,Dallaire Pierre-Olivier1,Larose Guy3

Affiliation:

1. Rowan, Williams, Davies & Irwin, Inc., Bromont, QC, Canada

2. Rowan, Williams, Davies & Irwin, Inc., Guelph, ON, Canada

3. Rowan, Williams, Davies & Irwin, Inc., Ottawa, ON, Canada

Abstract

Wind stability and design loads of long-span bridges are assessed applying experimental and theoretical methods. The commonly used approach entails the extraction of fundamental aerodynamic data of key structural elements such as the deck, towers, and cables, either experimentally or numerically, and the application of theoretical models for evaluation of structural responses to turbulent winds. This phenomenon called buffeting is extremely complex and, to date, there is no closed-form theoretical model to reproduce how the wind converts to structural responses and loads which the bridge must resist. The objective of this paper is to explore the base of the problem, namely the transformation of wind gusts to actual loads, and the response estimations. The time domain response approach has been adopted for solution of the generalized equations of motion allowing the exploration of details in the performance of various theoretical interpretations. Starting from the classic quasi-static linear model, theoretical simplifications are removed toward a more complete model of buffeting loads. Non-linear and aerodynamic coupling effects on response predictions are examined specifically aiming at improved buffeting load representations within the framework of the currently available experimental data. A new concept called stack state-space analysis has been introduced for the response solution to wind buffeting. Aerodynamic and structural data of Pierre-Laporte Bridge in Québec City, and the IABSE Working Group 10, long-span bridge validation example, are utilized as representative cases in this study. Avenues for further experimental and numerical validations of the presented new solution approach are suggested toward more accurate predictions of wind response and design loads of long-span bridges.

Publisher

IOS Press

Subject

Building and Construction

Reference22 articles.

1. On the application of statistical concepts to the buffeting problem, J;Liepmann;Aeronaut. Sci,1952

2. The response of slender, line-like structures to a gusty wind, Inst;Davenport;Civ. Eng,1962

3. The action of flexible bridges under wind II: buffeting theory;Scanlan;Sounds Vibrations,1978

4. Aeroelastic analysis of bridge girder sections based on discrete vortex simulations;Larsen;J Wind Eng Ind Aerod,1997

5. Time domain flutter and buffeting response analysis of bridges;Chen;J Eng Mech,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Bridge Structures;2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3