Dynamics and robustness for the 2D Navier–Stokes equations with multi-delays in Lipschitz-like domains

Author:

Su Keqin1,Yang Xin-Guang23,Miranville Alain23,Yang He4

Affiliation:

1. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, P.R. China

2. Department of Mathematics and Information Science, Henan Normal University, Xinxiang, 453007, P.R. China

3. Laboratoire de Mathématiques et Applications, Université de Poitiers, Site du Futuroscope-Téléport 2, 11 Boulevard Marie et Pierre Curie, Bâtiment H3, TSA 61125, 86073 Poitiers Cedex 9, France

4. College of Mathematics and Statistics, Northwest Normal University, Lanzhou, 730070, P.R. China

Abstract

This paper is concerned with the dynamics of the two-dimensional Navier–Stokes equations with multi-delays in a Lipschitz-like domain, subject to inhomogeneous Dirichlet boundary conditions. The regularity of global solutions and of pullback attractors, based on tempered universes, is established, extending the results of Yang, Wang, Yan and Miranville (Discrete Contin. Dyn. Syst. 41 (2021) 3343–3366). Furthermore, the robustness of pullback attractors when the delays, considered as small perturbations, disappear is also derived. The key technique in the proofs is the application of a retarded Gronwall inequality and a variable index for the tempered pullback dynamics, allowing to obtain uniform estimates and the compactness of the process.

Publisher

IOS Press

Subject

General Mathematics

Reference40 articles.

1. Global attractors for damped semiliear wave equations;Ball;Discrete Contin. Dyn. Syst.,2004

2. Navier–Stokes equations with hereditary viscosity;Barbu;Z. Angew Math. Phys.,2003

3. On the dimension of the attractor of the non-homogeneous Navier–Stokes equations in non-smooth domains;Brown;Inidian University Math. J.,2000

4. On the upper semi-continuity of cocycle attractors for non-autonomous and random dynamical systems;Caraballo;Discrete Contin. Dyn. Syst.,2003

5. Upper semi-continuity of attractors for small random perturbations of dynamical systems;Caraballo;Comm. Partial Differential Equations,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3