Comparative study on the effect of color spaces and color formats on heart rate measurement using the imaging photoplethysmography (IPPG) method

Author:

Zhang Chi1,Tian Jing1,Li Deyu12,Hou Xiaoxu3,Wang Li4

Affiliation:

1. Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China

2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, China

3. National Institutes for Food and Drug Control, Beijing, China

4. Beijing Research Center of Urban System Engineering, Beijing, China

Abstract

BACKGROUND: The imaging photoplethysmography (IPPG) technology has been demonstrated to be an effective method for heart rate (HR) monitoring. However, some interference caused by the ambient illumination variation and facial motion severely influences the accuracy of the HR measurement. Some color spaces and color formats are assumed to reduce the interference, and enhance the accuracy of HR estimation. OBJECTIVE: The aim is to identify the optimal color space and format for IPPG based HR measurement. METHODS: Six color spaces and 3 color formats are compared in this study, based on an IPPG based HR measurement system. 424 pieces of videos captured by the system are used for the selection of the optimal color channel and color space; while 10 pieces of videos are for the identification of the optimal color format. RESULTS: The results shows that the green channel of RGB space is the optimal color channel, and RGB is the optimal color space, in respect of the mean squared error of HR estimation. BayerBG 8bit is found to be the optimal color format for video recording, which can significantly reduce the HR estimation error. CONCLUSIONS: BayerBG 8bit color format for video recording, and RGB color space for video analysis is suggested for the IPPG based HR measurement system. The suitable configuration of color space and format could enhance the accuracy of HR measurement.

Publisher

IOS Press

Subject

Health Informatics,Biomedical Engineering,Information Systems,Biomaterials,Bioengineering,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3