Affiliation:
1. Department of Mathematics, Faculty of Education, Ain Shams University, , , Egypt
Abstract
The present investigation analyzes the influence of Cattaneo–Christov heat and mass fluxes on peristaltic transport of an incompressible flow. The fluid is obeying Bingham alumina nanofluid. The fluid flows between two co-axial vertical tubes. The system is expressed by a varying radially magnetic field with respect to the space. Soret effect and non-Darcy porous medium are taken into account. The governing system of equations is tackled by utilizing the approximations of long wave length with low Reynolds number and with the help of homotopy perturbation method (HPM). It is noticed that the axial velocity magnifies with an increase in the value of Bingham parameter. Meanwhile, the value of the axial velocity reduces with the elevation in the value of the magnetic field parameter. On the other hand, the elevation in the value of thermal relaxation time leads to a reduction in the value of fluid temperature. Furthermore, increasing in the value of mass relaxation time parameter makes an enhancement in the value of nanoparticles concentration. It is noticed also that the size of the trapped bolus enhances with the increment in the value of Bingham parameter. The current study has many accomplishments in several scientific areas like medical industry, medicine, and others. Therefore, it represents the depiction of the gastric juice motion in the small intestine when an endoscope is inserted through it.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Electronic, Optical and Magnetic Materials
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献