A hybrid evolutionary learning classification for robot ground pattern recognition

Author:

Zuo Jiankai1,Zhang Yaying1

Affiliation:

1. Department of Computer Science and Technology, and Key Laboratory of Embedded System and Service Computing Ministry of Education, Tongji University, Shanghai

Abstract

In the field of intelligent robot engineering, whether it is humanoid, bionic or vehicle robots, the driving forms of standing, moving and walking, and the consciousness discrimination of the environment in which they are located have always been the focus and difficulty of research. Based on such problems, Naive Bayes Classifier (NBC), Support Vector Machine(SVM), k-Nearest-Neighbor (KNN), Decision Tree (DT), Random Forest (RF) and eXtreme Gradient Boosting (XGBoost) were introduced to conduct experiments. The six individual classifiers have an obvious effect on a particular type of ground, but the overall performance is poor. Therefore, the paper proposes a “Novel Hybrid Evolutionary Learning” method (NHEL) which combines every single classifier by means of weighted voting and adopts an improved genetic algorithm (GA) to obtain the optimal weight. According to the fitness function and evolution times, this paper designs the adaptively changing crossover and mutation rate and applies the conjugate gradient (CG) to enhance GA. By making full use of the global search capabilities of GA and the fast local search ability of CG, the convergence speed is accelerated and the search precision is upgraded. The experimental results show that the performance of the proposed model is significantly better than individual machine learning and ensemble classifiers.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3