Affiliation:
1. School of Information Science and Engineering, Shandong University, Qingdao, China
2. School of Intelligent Engineering, Shandong Management University, Jinan, China
3. School of Microelectronics, Xidian University, Xian, China
Abstract
Throughout the wireless communication network planning process, efficient signal reception power estimation is of great significance for accurate 5 G network deployment. The wireless propagation model predicts the radio wave propagation characteristics within the target communication coverage area, making it possible to estimate cell coverage, inter-cell network interference, and communication rates, etc. In this paper, we develop a series of features by considering various factors in the signal transmission process, including the shadow coefficient, absorption coefficient in test area and base station area, distance attenuation coefficient, density, azimuth angle, relative height and ground feature index coefficient. Then we design a quantile regression neural network to predict reference signal receiving power (RSRP) by feeding the above features. The network structure is specially constructed to be generalized on various complex real environments. To prove the effectiveness of proposed features and deep learning model, extensive comparative ablation experiments are applied. Finally, we have achieved the precision rate (PR), recall rate (RR), and inadequate coverage recognition rate (PCRR) of 84.3%, 78.4%, and 81.2% on the public dataset, respectively. The comparison with a series of state-of-the-art machine learning methods illustrates the superiority of the proposed method.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献