A new approach to solving target coverage problem in wireless sensor networks using an effective hybrid genetic algorithm and tabu search

Author:

Ajam Leila1,Nodehi Ali1,Mohamadi Hosein2

Affiliation:

1. Department of Computer Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran

2. Department of Computer Engineering, Azadshar Branch, Islamic Azad University, Azadshar, Iran

Abstract

Literature in recent years has introduced several studies conducted to solve the target coverage problem in wireless sensor networks (WSNs). Sensors are conventionally assumed as devices with only a single power level. However, real applications may involve sensors with multiple power levels (i.e., multiple sensing ranges each of which possesses a unique power consumption). Consequently, one of the key problems in WSNs is how to provide a full coverage on all targets distributed in a network containing sensors with multiple power levels and simultaneously prolong the network lifetime as much as possible. This problem is known as Maximum Network Lifetime With Adjustable Ranges (MNLAR) and its NP-completeness has been already proved. To solve this problem, we proposed an efficient hybrid algorithm containing Genetic Algorithm (GA) and Tabu Search (TS) aiming at constructing cover sets that consist of sensors with appropriate sensing ranges to provide a desirable coverage for all the targets in the network. In our hybrid model, GA as a robust global searching algorithm is used for exploration purposes, while TS with its already-proved local searching ability is utilized for exploitation purposes. As a result, the proposed algorithm is capable of creating a balance between intensification and diversification. To solve the MNLR problem in an efficient way, the proposed model was also enriched with an effective encoding method, genetic operators, and neighboring structure. In the present paper, different experiments were performed for the purpose of evaluating how the proposed algorithm performs the tasks defined. The results clearly confirmed the superiority of the proposed algorithm over the greedy-based algorithm and learning automata-based algorithm in terms of extending the network lifetime. Moreover, it was found that the use of multiple power levels altogether caused the extension of the network lifetime.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3