Data-driven approach to identify obsolete functions of products for design improvements

Author:

Zhao Zhihua1,Li Yupeng1,Chu Xuening2

Affiliation:

1. Department of Industrial Engineering, School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu, China

2. Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China

Abstract

Identifying defective design elements is a prerequisite for design improvements. Previous identification methods were implemented in the context of static customer requirements (CRs). However, CRs always evolve continuously, which easily leads to a failure of existing product functions in fulfilling customer expectations; this, in turn, can lead to a decline in customer satisfaction. In this study, the phenomenon is termed as ‘function obsolescence’, and a data-driven identification approach for obsolete functions is proposed for design improvements. Firstly, product operating data are employed to construct the observing parameters of functional performance (OPs), and based on the distribution of OPs, the desired level of functional performance (DL) is defined to quantitatively characterise CRs. Secondly, the time series of DL is constructed to embody the evolution of CRs, in which a Sigmoid-like function is employed to establish a dissatisfaction function. With the time series, an obsolescence index measuring the severity of obsolescence for each function is defined to identify obsolete functions. A case study was implemented on a smart phone to identify its obsolete functions to demonstrate the effectiveness of the proposed methodology. The results show that some potentially obsolete functions can be identified by the proposed method considering the evolution of CRs.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3