Affiliation:
1. Department of Industrial Engineering, School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu, China
2. Department of Industrial Engineering and Management, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
Abstract
Identifying defective design elements is a prerequisite for design improvements. Previous identification methods were implemented in the context of static customer requirements (CRs). However, CRs always evolve continuously, which easily leads to a failure of existing product functions in fulfilling customer expectations; this, in turn, can lead to a decline in customer satisfaction. In this study, the phenomenon is termed as ‘function obsolescence’, and a data-driven identification approach for obsolete functions is proposed for design improvements. Firstly, product operating data are employed to construct the observing parameters of functional performance (OPs), and based on the distribution of OPs, the desired level of functional performance (DL) is defined to quantitatively characterise CRs. Secondly, the time series of DL is constructed to embody the evolution of CRs, in which a Sigmoid-like function is employed to establish a dissatisfaction function. With the time series, an obsolescence index measuring the severity of obsolescence for each function is defined to identify obsolete functions. A case study was implemented on a smart phone to identify its obsolete functions to demonstrate the effectiveness of the proposed methodology. The results show that some potentially obsolete functions can be identified by the proposed method considering the evolution of CRs.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献