Modeling an web community discovery method with web page attraction

Author:

Lei Shi1

Affiliation:

1. College of Computer Science, Chengdu Normal University, Chengdu, China

Abstract

An improved Web community discovery algorithm is proposed in this paper based on the attraction between Web pages to effectively reduce the complexity of Web community discovery. The proposed algorithm treats each Web page in the Web pages collection as an individual with attraction based on the theory of universal gravitation, elaborates the discovery and evolution process of Web community from a Web page in the Web pages collection, defines the priority rules of Web community size and Web page similarity, and gives the calculation formula of the change in Web page similarity. Finally, an experimental platform is built to analyze the specific discovery process of the Web community in detail, and the changes in cumulative distribution of Web page similarity are discussed. The results show that the change in the similarity of a new page satisfies the power-law distribution, and the similarity of a new page is proportional to the size of Web community that the new page chooses to join.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference30 articles.

1. Opinion community detection and opinion leader detection based on text information and network topology in cloud environment;Li;Information Sciences,2019

2. An overlapping community detection algorithm based on rough clustering of links;Gupta;Data & Knowledge Engineering

3. Link prediction based on the powerful combination of endpoints and neighbors;Gao;International Journal of Modern Physics B,2020

4. Community leader and transition probability based LPA;Chen;International Journal of Modern Physics B,2020

5. Parallel community detection based on distance dynamics for large-scale network;He;IEEE Access,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3