Postural responses exhibit multisensory dependencies with discordant visual and support surface motion

Author:

Keshner Emily A.12,Kenyon Robert V.3,Langston Jessica1

Affiliation:

1. Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago IL, USA

2. Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago IL, USA

3. Department of Computer Science, University of Illinois at Chicago, Chicago IL, USA

Abstract

The purpose of this study was to identify how the postural system weights coincident yet discordant disturbances of the visual and proprioceptive/vestibular systems. Eleven healthy subjects (25–38 yrs) received either fore-aft translations of an immersive, wide field-of-view visual environment (0.1 Hz, ± 3.7 m/sec), or anterior-posterior translations of the support surface (0.25 Hz, ± 15 cm/sec), or both concurrently. Kinematics of the head, trunk, and shank were collected with an Optotrak system and angular motion of each segment plotted across time. With only support surface translation, segmental responses were small (1°–2°) and mostly opposed the direction of sled translation. When only the visual scene was moving, segmental responses increased as the trial progressed. When the inputs were presented coincidentally, response amplitudes were large even at the onset of the trial. Mean RMS values across subjects were significantly greater with combined stimuli than for either stimulus presented alone and areas under the power curve across subjects were significantly increased at the frequency of the visual input when both inputs were presented. Thus, intra-modality dependencies were observed, such that responses to the visual inputs significantly increased and responses to the somatosensory signals reflected the stimulus amplitude only when the two inputs were combined. We believe it unlikely that the role of any single pathway contributing to postural control can be accurately characterized in a static environment if the function of that pathway is context dependent.

Publisher

IOS Press

Subject

Neurology (clinical),Sensory Systems,Otorhinolaryngology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3