The palm tree optimization: Algorithm and applications

Author:

Padmanaban K.1ORCID,Shunmugalatha A.2ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, India

2. Department of Electrical and Electronics Engineering, Velammal College of Engineering and Technology, Madurai, Tamil Nadu, India

Abstract

A novel metaheuristic algorithm has been presented based on the physical significance of palm tree leaves and petioles, which can themselves water and fertilize with their unique architecture. Palm tree leaves collect almost all the raindrops that fall on the tree, which drags the nutrient-rich dropping of crawlers and birds that inhabit it and funnel them back to the palm tree’s roots. The proposed Palm Tree Optimization (PTO) algorithm is based on two main stages of rainwater before it reaches the trunk. Stage one is that the rainwater drops search for petioles in the local search space of a particular leaf, and stage two involves that the rainwater drops after reaching the petioles search for trunk to funnel back to the root along with nutrients. The performance of PTO in searching for global optima is tested on 33 Standard Benchmark Functions (SBF), 29 constrained optimization problems from IEEE-CEC2017 and real-world optimization problems from IEEE-CEC2011 competition especially for testing the evolutionary algorithms. Mathematical benchmark functions are classified into six groups as unimodal, multimodal, plate & valley-shaped, steep ridges, hybrid functions and composition functions which are used to check the exploration and exploitation capabilities of the algorithm. The experimental results prove the effectiveness of the proposed algorithm with better search ability over different classes of benchmark functions and real-world applications.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3