MFFA: Multi-level feature fusion and anomaly map compensation for anomaly detection

Author:

Zhang Ruifan1,Wang Hao1,Yang Gongping1

Affiliation:

1. School of Software, Shandong University, Jinan, China

Abstract

Embedding similarity-based methods obtained good results in unsupervised anomaly detection (AD). This kind of method usually used feature vectors from a model pre-trained by ImageNet to calculate scores by measuring the similarity between test samples and normal samples. Ultimately, anomalous regions are localized based on the scores obtained. However, this strategy may lead to a lack of sufficient adaptability of the extracted features to the detection of anomalous patterns for industrial anomaly detection tasks. To alleviate this problem, we design a novel anomaly detection framework, MFFA, which includes a pseudo sample generation (PSG) block, a local-global feature fusion perception (LGFFP) block and an anomaly map compensation (AMC) block. The PSG block can make the pre-trained model more suitable for real-world anomaly detection tasks by combining the CutPaste augmentation. The LGFFP block aggregates shallow and deep features on different patches and inputs them to CaiT (Class-attention in image Transformers) to guide self-attention, effectively interacting local and global information between different patches, and the AMC block can compensate each other for the two anomaly maps generated by the nearest neighbor search and multivariate Gaussian fitting, improving the accuracy of anomaly detection and localization. In experiments, MVTec AD dataset is used to verify the generalization ability of the proposed method in various real-world applications. It achieves over 99.1% AUROCs in detection and 98.4% AUROCs in localization, respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference8 articles.

1. Anomaly detection innanofibrous materials by cnn-based self-similarity;Napoletano;Sensors,2018

2. Abdine, Anomaly detection in formedsheet metals using convolutional autoencoders,;Heger;Procedia CIRP,2020

3. Pidhorskyi S. , Almohsen R. and Doretto G. , Generative probabilisticnovelty detection with adversarial autoencoders, , Advances inNeural Information Processing Systems 31 (2018).

4. f-anogan: Fast unsupervised anomaly detection withgenerative adversarial networks,;Schlegl;Medical Image Analysis,2019

5. Learning semanticcontext from normal samples for unsupervised anomaly detection;Yan;in: Proceedings of the AAAI Conference on ArtificialIntelligence,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3