Enhancing the lateral stability of the vehicle by using a fuzzy algorithm to control the active stabilizer bar

Author:

Nguyen Tuan Anh1

Affiliation:

1. Faculty of Mechanical Engineering, Thuyloi University, Hanoi, Vietnam

Abstract

This article studies the instability of automobiles when steering at high speeds. In this article, the model of spatial dynamics is used to simulate vehicle oscillation. Besides, the model of nonlinear double-track dynamics is also combined to determine the effects of the wheel when steering. To limit the instability when steering, the hydraulic stabilizer bar is suggested. The performance of the system depends on the previously designed controller. The FLC algorithm with two inputs is used to control the operation of the system. The membership function and fuzzy rules are determined based on the designer’s experience. The simulation is performed by MATLAB software with three specific steering cases. In each case, the speed of the vehicle will be increased gradually. The results of the article show that the value of the roll angle is greatest in the third case, corresponding to the speed of v3 = 100 (km/h). If the vehicle does not have a stabilizer bar, the vehicle can roll over at any time. In contrast, when the active stabilizer bar was combined with the proposed FLC algorithm, the vehicle’s stability was significantly improved. The vehicle’s roll angle and the difference in vertical force at the wheels were also significantly reduced when using this algorithm for the stabilizer bar model. This result should be further verified through the experimental process.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference34 articles.

1. Research method of vehicle rollover mechanism under critical instability condition;Li;Advances in Mechanical Engineering,2019

2. Automobile active tilt control based on active suspension;Yao;Advances in Mechanical Engineering,2018

3. Heavy dutyvehicle rollover detection and active roll control;Yu;Vehicle System Dynamics,2008

4. Determining the vertical force when steering;Anh;Advances in System Science and Applications,2020

5. Establishing the method to predict the limited roll angle of the vehicle based on the basic dimensions;Nguyen;Mathematical Modelling of Engineering Problems,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3