Effects on fractional domination in graphs

Author:

Shanthi P.1,Amutha S.2,Anbazhagan N.1,Bragatheeswara Prabu S.3

Affiliation:

1. Department of Mathematics, Alagappa University, Karaikudi, Tamilnadu, India

2. Ramanujan Centre for Higher Mathematics (RCHM), Alagappa University, Karaikudi, Tamilnadu, India

3. Kendriya Vidyalaya, AFS, Avadi, Chennai, Tamilnadu, India

Abstract

 A graph G is an undirected finite connected graph. A function f : V (G) → [0, 1] is called a fractional dominating function if, ∑u∈N[v]f (u) ≥1, for all v ∈ V, where N [v] is the closed neighborhood of v. The weight of a fractional dominating function is w (f) = ∑v∈V(G)f (v). The fractional domination number γf (G) has the least weight of all the fractional dominating functions of G. In this paper, we analyze the effects on γf (G) of deleting a vertex from G. Additionally, some bounds on γf (G) are discussed, and provide the exactness of some bounds. If we remove any leaves from any tree T, then the resulting graphs are , where |l| is the number of leaves. Some of the results are proved by the eccentricity value of a vertex e (v).

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference9 articles.

1. A note on sets V t - , V t 0 , V t + of a simple graph G with δ (G) ≥2;Amutha;Journal of Pure and Applied Mathematics: Advances and Applications,2013

2. Fractional Edge Domination in Graphs;Arumugam;Applicable Analysis and Discrete Mathematics,2009

3. Balamurugan S. , Changing and unchanging isolate domination: Edge removal, Discrete Mathematics Algorithms and Applications 9(1) (2017).

4. Changing and unchanging of eccentric domination number in graphs;Bhanumathi;International Journal of Pure and Applied Mathematics,2018

5. Changing and Unchanging of distance closed domination number in graphs;Janakiraman;International Journal of Engineering Science, Advanced Computing and Bio-Technology,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3