Multiple vehicles tracking and detection using weight high order singular value decomposition dimensionality reduction and double classifiers

Author:

Ranjeeth Kumar C.1,Kalaiarasu M.1

Affiliation:

1. Department of Information Technology, Sri Ramakrishna Engineering College, Coimbatore, India

Abstract

Controlling and managing city traffic is one of them. In order to use image processing to prevent accidents on the road, vehicle tracking and detection are essential. By following moving objects, surveillance video monitoring and human activity recording are carried out. By taking this into account, a useful technique for image processing that detects automobiles from the image is suggested. For numerous vehicle tracking and detection systems, the ECNN-SVM (Enhanced Convolution Neural Network with Support Vector Machine) has just been introduced. However, the larger dimensional data space and inaccurate edge recognition make this system’s performance difficult. The WHOSVD (Weight High Order Singular Value Decomposition) approach, which reduces the dimension and breaks up the positive and negative training picture samples, is established to improve training speed and visual vehicle recognition. To effectively identify the edges at corners, improved canny edge detection is used for edge detection. Mean Kernel Fuzzy C Means (MKFCM) clustering algorithm-based three-dimensional bounding box estimation is used to identify the vehicle items. By merging the feature value of samples with their class labels, the Speed Factor Based Cuckoo Search Algorithm (SFCSA) is introduced for feature selection. The WHOSVD algorithm was used as the input for the enhanced convolutional neural network (ECNN), which is introduced for low-dimensional space and is used for vehicle detection and tracking. Occlusion problems are resolved and target features are further identified using a machine learning classifier. For common algorithms like CNN+SVM, Support Vector Machine (SVM), and the proposed technique, experimentation is done in regards to the metrics of accuracy, f-measure, precision, and recall for performance evaluation.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference27 articles.

1. On-line fusion of trackers for single-object tracking;Leang;Pattern Recognition,2018

2. Vehicle tracking by detection in UAV aerial video;Liu;Science China Information Sciences,2019

3. Vehicle object tracking method based on highway scenario [J],;Song;Computer Systems & Applications,2019

4. Bounding multiple Gaussians uncertainty with application to object tracking;Zhang;Int. J. Comput. Vis.,2016

5. Employing a RGB-D sensor for real-time tracking of humans across multiple reentries in a smart environment;Han;IEEE Trans. Consum. Electron.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3