Modeling the hardness properties of high-performance concrete via developed RBFNN coupling matheuristic algorithms
Author:
Affiliation:
1. Lanzhou Resources Environment Voc-Tech University Lan Zhou, China
2. Liaoning Technical University, Liaoning Province, China
Abstract
Publisher
IOS Press
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Reference52 articles.
1. High performance concrete— An overview;Neville;Mater Struct,1998
2. Appraisal of long-term effects of fly ash and silica fume on compressive strength of concrete by neural networks;Pala;Constr Build Mater,2007
3. Experimental impact analysis on ultra-high performance concrete (UHPC) for achieving stress equilibrium (SE) and constant strain rate (CSR) in Split Hopkinson pressure bar (SHPB) using pulse shaping technique;Hassan;Constr Build Mater,2017
4. Green concrete composite incorporating fly ash with high strength and fracture toughness;Golewski;J Clean Prod,2018
5. Jalal M. , Pouladkhan A. , Harandi O.F. and Jafari D. , Comparative study on effects of Class F fly ash, nano silica and silica fume on properties of high performance self compacting concrete, Constr Build Mater 94(90), 104, 2015.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3