Global layout optimization of star-tree gas gathering pipeline network via an improved genetic optimization algorithm

Author:

Peng Jinghong1,Zhou Jun1,Liang Guangchuan1,Qin Can1,Peng Cao1,Chen YuLin1,Hu Chengqiang1

Affiliation:

1. Petroleum Engineering School, Southwest Petroleum University, Chengdu, P.R. China

Abstract

Gas gathering pipeline network system is an important process facility for gas field production, which is responsible for collecting, transporting and purifying natural gas produced by wells. In this paper, an optimization model for the layout of star-tree gas gathering pipeline network in discrete space is established to find the most economical design scheme. The decision variables include valve set position, station position and pipeline connection relation. A series of equality and inequality constraints are developed, including node flow balance constraints, pipeline hydraulic constraints and pipeline structure constraints. A global optimization strategy is proposed and an improved genetic algorithm is used to solve the model. To verify the validity of the proposed method, the optimization model is applied to a coalbed methane field gathering pipeline network in China. The results show that the global optimization scheme saves 1489.74×104 RMB (26.36%) in investment cost compared with the original scheme. In addition, the comparison between the global and hierarchical optimization scheme shows that the investment cost of the global optimization scheme is 567.22×104 RMB less than that of the hierarchical optimization scheme, which further proves the superiority of the global optimization method. Finally, the study of this paper can provide theoretical guidance for the design and planning of gas field gathering pipeline network.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference18 articles.

1. BP, Energy Outlook 2035[A], London, UK, 2015.

2. Optimization problems in natural gas transportation systems: Astate-of-the-art review[J];Ríos-Mercado;Applied Energy,2015

3. Oil production cost function and oil recovery implementation-evidence from an iranian oil field[J];Pashakolaie;Energy Exploration & Exploitation,2015

4. An MILP method for optimal offshore oilfield gathering system[J];Zhang;Ocean Engineering,2017

5. p-Median based formulations with backbone facility locations[J];Adasme;Applied Soft Computing,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3