Selection of single machine learning model for designing compressive strength of stabilized soil containing lime, cement and bitumen

Author:

Tran Van Quan1

Affiliation:

1. University of Transport Technology, Hanoi, Vietnam

Abstract

The unconfined compressive strength (Qu) is one of the most important criteria of stabilized soil to design in order to evaluate the effective of soft soil improvement. The unconfined compressive strength of stabilized soil is strongly affected by numerous factors such as the soil properties, the binder content, etc. Machine Learning (ML) approach can take into account these factors to predict the unconfined compressive strength (Qu) with high performance and reliability. The aim of this paper is to select a single ML model to design Qu of stabilized soil containing some chemical stabilizer agents such as lime, cement and bitumen. In order to build the single ML model, a database is created based on the literature investigation. The database contains 200 data samples, 12 input variables (Liquid limit, Plastic limit, Plasticity index, Linear shrinkage, Clay content, Sand content, Gravel content, Optimum water content, Density of stabilized soil, Lime content, Cement content, Bitumen content) and the output variable Qu. The performance and reliability of ML model are evaluated by the popular validation technique Monte Carlo simulation with aided of three criteria metrics including coefficient of determination R2, Root Mean Square Error (RMSE) and Mean Square Error (MAE). ML model based on Gradient Boosting algorithm is selected as highest performance and highest reliability ML model for designing Qu of stabilized soil. Explanation of feature effects on the unconfined compressive strength Qu of stabilized soil is carried out by Permutation importance, Partial Dependence Plot (PDP 2D) in two dimensions and SHapley Additive exPlanations (SHAP) local value. The ML model proposed in this investigation is single and useful for professional engineers with using the mapping Maximal dry density-Linear shrinkage created by PDP 2D.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference43 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3