Deep learning models used for accuracy and loss detection on twitter dataset by setting tuning parameters

Author:

Jain Archika1,Sharma Sandhya2

Affiliation:

1. Department of CSE, Suresh Gyan Vihar University, Jaipur, India

2. Department of ECE, Suresh Gyan Vihar University, Jaipur, India

Abstract

Hate speech on social media post is running now a days. Social media like YouTube, Twitter, and Facebook etc. are responsible for hated speech. Hated speech spreads through digital media, causing individuals to get confused and adopt prejudiced viewpoints. To limit the negative effects of disinformation on the digital platform, it is critical to detect it. Now a days, lots of digital platforms are available. Hate speech detection in dataset is very difficult. As a result, the Twitter dataset is of the size of 25296 is presented in this work. Many deep learning techniques are applied on Twitter dataset. The Google Colab tool is used to scrape dataset material. Different deep learning approaches are utilized to boost the accuracy of the hated speech dataset. For training and validation accuracy and loss some models are used on Twitter dataset like Bi-directional Long Short Term Memory with Glove, Bi-LSTM, and Embedding from Language Model (Elmo) with deep learning, Convolutional Neural Network (CNN), Long Short Term Memory with Glove and LSTM. The performance of the proposed tweet dataset is evaluated using a variety of deep learning classifiers on text dataset. The planned deep learning techniques produced good results on tweet dataset. LSTM with Glove gave the highest accuracy 0.89 and minimum loss 0.19 on tweet dataset. So when compare our model on same dataset that was used earlier then we get highest accuracy and minimum loss.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3