An enhancement of transformer-based architecture with randomized regularization for wind speed prediction

Author:

Vo Tham1

Affiliation:

1. Thu Dau Mot University, Binh Duong, Vietnam

Abstract

The wind power is considered as a potential renewable energy resource which requires less management cost and effort than the others like as tidal, geothermal, etc. However, the natural randomization and volatility aspects of wind in different regions have brought several challenges for efficiently as well as reliably operating the wind-based power supply grid. Thus, it is necessary to have centralized monitoring centers for managing as well as optimizing the performance of wind power farms. Among different management task, wind speed prediction is considered as an important task which directly support for further wind-based power supply resource planning/optimization, hence towards power shortage risk and operating cost reductions. Normally, considering as traditional time-series based prediction problem, most of previous deep learning-based models have demonstrated significant improvement in accuracy performance of wind speed prediction problem. However, most of recurrent neural network (RNN) as well as sequential auto-encoding (AE) based architectures still suffered several limitations related to the capability of sufficient preserving the spatiotemporal and long-range time dependent information of complex time-series based wind datasets. Moreover, previous RNN-based wind speed predictive models also perform poor prediction results within high-complex/noised time-series based wind speed datasets. Thus, in order to overcome these limitations, in this paper we proposed a novel integrated convolutional neural network (CNN)-based spatiotemporal randomization mechanism with transformer-based architecture for wind speed prediction problem, called as: RTrans-WP. Within our RTrans-WP model, we integrated the deep neural encoding component with a randomized CNN learning mechanism to softy align temporal feature within the long-range time-dependent learning context. The utilization of randomized CNN component at the data encoding part also enables to reduce noises and time-series based observation uncertainties which are occurred during the data representation learning and wind speed prediction-driven fine-tuning processes.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3