Detection of meningioma tumor images using Modified Empirical Mode Decomposition (MEMD) and convolutional neural networks

Author:

Krishnakumar S.1,Manivannan K.2

Affiliation:

1. Department of Electronics and Communication Engineering, Theni Kammavar Sangam College of Technology, Theni, Tamilnadu, India

2. Department of Computer Science and Engineering, PSNA College of Engineering and Technology, Dindigul, Tamilnadu, India

Abstract

The meningioma brain tumor detection is more important than the other tumor detection such as Glioma and Glioblastoma, due to its high severity level. The tumor pixel density of meningioma tumor is high and it leads to sudden death if it is not detected timely. The meningioma images are detected using Modified Empirical Mode Decomposition- Convolutional Neural Networks (MEMD-CNN) classification approach. This method has the following stages data augmentation, spatial-frequency transformation, feature computations, classifications and segmentation. The brain image samples are increased using data augmentation process for improving the meningioma detection rate. The data augmented images are spatially transformed into frequency format using MEMD transformation method. Then, the external empirical mode features are computed from this transformed image and they are fed into CNN architecture to classify the source brain image into either meningioma or non-meningioma. The pixels belonging tumor category are segmented using morphological opening-closing functions. The meningioma detection system obtains 99.4% of Meningioma Classification Rate (MCR) and 99.3% of Non-Meningioma Classification Rate (NMCR) on the meningioma and non-meningioma images. This MEMD-CNN technique for meningioma identification attains 98.93% of SET, 99.13% of SPT, 99.18% of MSA, 99.14% of PR and 99.13% of FS. From the statistical comparative analysis of the proposed MEMD-CNN system with other conventional detection systems, the proposed method provides optimum tumor segmentation results.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference13 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Energy-Saving Technology for Carbon Dioxide Transcritical Wide Temperature Range Based on EMD Algorithm;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3