Image classification using gaussian curvature based local tetra pattern descriptor with enhanced feature selection technique

Author:

Lakshmi Narayanan S.1,Ignatia K. Majella Jenvi2,Alfurhood Badria Sulaiman3,Bhat Nagaraj4

Affiliation:

1. Department of ECE, GOJAN School of Business and Technology, Chennai

2. Mathematics Department, Saveetha School of Engineering, SIMATS, Thandalam Campus, Tamil Nadu, India

3. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Saudi Arabia

4. Department of ECE, RV College of Engineering, Bangalore

Abstract

A Gaussian Curvature-based Local Tetra Descriptor (GCLTrP) is proposed in this paper to incorporate geometric discriminative feature extraction using a hybrid combination of Gaussian Curvature (GC) and Local Terta Pattern (LTrP). The texture of an image is locally discriminant, capturing the equivalent binary response from the gaussian curvature. The extracted feature value is fed into the Enhanced Grey Wolf Optimization (EGWO), a lightweight metaheuristic searching algorithm that selects the best optimal textural features. The proposed GCLTrP with EGWO method’s effective performance is validated using the benchmarks dataset, and the results are tested using the performance evaluation metric. In comparison to other cutting-edge methods, the proposed method achieves the highest overall classification accuracy of 100% on the Brodatz and RS datasets. In terms of computational redundancy and noise reduction, the proposed technique outperforms the other existing techniques.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3