Self-attention generative adversarial capsule network optimized with atomic orbital search algorithm based sentiment analysis for online product recommendation

Author:

Periakaruppan Sudhakaran1,Shanmugapriya N.2,Sivan Rajeswari3

Affiliation:

1. Department of Computer Science and Engineering, SRM TRP Engineering College, Tiruchirappalli, Tamil Nadu, India

2. Department of Computer Science and Engineering, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Samayapuram, Trichy, Tamil Nadu, India

3. Department of Information Technology, K.Ramakrishnan College of Engineering, Samayapuram, Trichy, India

Abstract

Self-Attention based Generative Adversarial Capsule Network optimized with Atomic orbital search algorithm based Sentiment Analysis is proposed in this manuscript for Online Product Recommendation (SFA-AGCN-AOSA-SA-OPR). Here, Collaborative filtering (CF) and product-product (P-P) similarity method is utilized for designing the new recommendation system. CF is employed for predicting the best shops and P-P similarity method is employed to predict the better product. Initially, the datas are gathered via Amazon Product recommendation dataset. After that, the datas are given to pre-processing. During pre-processing, Markov chain random field (MCRF) co-simulation is used to remove the unwanted content and filtering relevant text. The preprocessing output is fed to feature extraction. The features, like manufacturing date, Manufacturing price, discounts, offers, quality ratings, and suggestions or reviews are extracted using Gray level co-occurrence matrix (GLCM) window adaptive algorithm based feature extraction method. Finally, Self-Attention based Generative Adversarial Capsule Network (SFA-AGCN) categorizes the product recommendation as excellent, good, very good, bad, very bad. Atomic orbital search algorithm optimizes the SFA-AGCN weight parameters. The performance metrics, like accuracy, precision, sensitivity, recall, F-measure, mean absolute error (MAE), mean squared error (MSE), mean absolute percentage error (MAPE) is examined. The efficiency of the proposed method provides higher mean absolute percentage error 98.23%, 88.34%, 90.35% and 78.96% and lower Mean squared error 92.15%, 90.25%, 89.64% and 92.48% compared to the existing methods, such as sentiment analysis of online product reviews using DLMNN and future prediction of online product using IANFIS (DLMNN-IANFIS-SA-OPR), intelligent sentiment analysis approach using edge computing based deep learning technique (DCNN-SA-OPR), sentiment analysis for online product reviews in Chinese depending on sentiment lexicon and deep learning (CNN-BiGRU-SA-OPR) and sentiment analysis on product reviews depending on weighted word embedding and deep neural networks (CNN-LSTM-SA-OPR) respectively.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3