Analysis of OWA operators for automatic keyphrase extraction in a semantic context

Author:

Pérez-Guadarramas Yamel1,Barreiro-Guerrero Manuel2,Simón-Cuevas Alfredo2,Romero Francisco P.3,Olivas José A.3

Affiliation:

1. Centro de Aplicaciones de Tecnologías de Avanzada, Playa, La Habana, Cuba

2. Universidad Tecnológica de La Habana José Antonio Echeverría, Marianao, La Habana, Cuba

3. Universidad de Castilla-La Mancha, Paseo de La Universidad, Ciudad Real, Spain

Abstract

Automatic keyphrase extraction from texts is useful for many computational systems in the fields of natural language processing and text mining. Although a number of solutions to this problem have been described, semantic analysis is one of the least exploited linguistic features in the most widely-known proposals, causing the results obtained to have low accuracy and performance rates. This paper presents an unsupervised method for keyphrase extraction, based on the use of lexico-syntactic patterns for extracting information from texts, and a fuzzy topic modeling. An OWA operator combining several semantic measures was applied to the topic modeling process. This new approach was evaluated with Inspec and 500N-KPCrowd datasets. Several approaches within our proposal were evaluated against each other. A statistical analysis was performed to substantiate the best approach of the proposal. This best approach was also compared with other reported systems, giving promising results.

Publisher

IOS Press

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Theoretical Computer Science

Reference29 articles.

1. M. Abdou, M. Salah and S. AbdelGaber, Unsupervised automatic keywords and keyphrases extractor for web documents, International Journal of Computer Science and Information Security (IJCSIS) 15(10) (2017).

2. A. Bougouin, F. Boudin and B. Daille, TopicRank: Graph-based topic ranking for keyphrase extraction, in: Proceedings of the Sixth International Joint Conference on Natural Language Processing, Nagoya, Japan, Oct. 2013, pp. 543–551. Asian Federation of Natural Language Processing.

3. Reprint of: The anatomy of a large-scale hypertextual web search engine;Brin;Computer Networks,2012

4. Evaluating wordnet-based measures of lexical semantic relatedness;Budanitsky;Computational Linguistics,2006

5. Yake! Keyword extraction from single documents using multiple local features;Campos;Information Sciences,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3