Forest path condition monitoring based on crowd-based trajectory data analysis

Author:

Arcas-Tunez Francisco1,Terroso-Saenz Fernando1

Affiliation:

1. Polytechnic School, Universidad Católica de Murcia (UCAM), Murcia, Spain. E-mails: farcas@ucam.edu, fterroso@ucam.edu

Abstract

The development of Road Information Acquisition Systems (RIASs) based on the Mobile Crowdsensing (MCS) paradigm has been widely studied for the last years. In that sense, most of the existing MCS-based RIASs focus on urban road networks and assume a car-based scenario. However, there exist a scarcity of approaches that pay attention to rural and country road networks. In that sense, forest paths are used for a wide range of recreational and sport activities by many different people and they can be also affected by different problems or obstacles blocking them. As a result, this work introduces SAMARITAN, a framework for rural-road network monitoring based on MCS. SAMARITAN analyzes the spatio-temporal trajectories from cyclists extracted from the fitness application Strava so as to uncover potential obstacles in a target road network. The framework has been evaluated in a real-world network of forest paths in the city of Cieza (Spain) showing quite promising results.

Publisher

IOS Press

Subject

Software

Reference32 articles.

1. G. Alessandroni, L. Klopfenstein, S. Delpriori, M. Dromedari, G. Luchetti, B. Paolini, A. Seraghiti, E. Lattanzi, V. Freschi, A. Carini et al., Smartroadsense: Collaborative road surface condition monitoring, in: Proceedings of the UBICOMM, 2014, pp. 210–215.

2. A mobile and interactive multiobjective urban tourist route planning system;Ayala;Journal of Ambient Intelligence and Smart Environments,2017

3. A privacy-preserving vehicular crowdsensing-based road surface condition monitoring system using fog computing;Basudan;IEEE Internet of Things Journal,2017

4. A survey of people-centric sensing studies utilizing mobile phone sensors;Bayındır;Journal of Ambient Intelligence and Smart Environments,2017

5. C. Borcea, M. Talasila and R. Curtmola, Mobile Crowdsensing, CRC Press, 2016.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3