Affiliation:
1. Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
Abstract
BACKGROUND: Precise teeth segmentation from dental panoramic X-ray images is an important task in dental practice. However, several issues including poor image contrast, blurring borders of teeth, presence of jaw bones and other mouth elements, makes reading and examining such images a challenging and time-consuming task for dentists. Thus, developing a precise and automated segmentation technique is required. OBJECTIVE: This study aims to develop and test a novel multi-fusion deep neural net consisting of encoder-decoder architecture for automatic and accurate teeth region segmentation from panoramic X-ray images. METHODS: The encoder has two different streams based on CNN which include the conventional CNN stream and the Atrous net stream. Next, the fusion of features from these streams is done at each stage to encode the contextual rich information of teeth. A dual-type skip connection is then added between the encoder and decoder to minimise semantic information gaps. Last, the decoder comprises deconvolutional layers for reconstructing the segmented teeth map. RESULTS: The assessment of the proposed model is performed on two different dental datasets consisting of 1,500 and 1,000 panoramic X-ray images, respectively. The new model yields accuracy of 97.0% and 97.7%, intersection over union (IoU) score of 91.1% and 90.2%, and dice coefficient score (DCS) of 92.4% and 90.7% for datasets 1 and 2, respectively. CONCLUSION: Applying the proposed model to two datasets outperforms the recent state-of-the-art deep models with a relatively smaller number of parameters and higher accuracy, which demonstrates the potential of the new model to help dentists more accurately and efficiently diagnose dental diseases in future clinical practice.
Subject
Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献