Enhancing teeth segmentation using multifusion deep neural net in panoramic X-ray images

Author:

Arora Saurabh1,Gupta Ruchir1,Srivastava Rajeev1

Affiliation:

1. Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India

Abstract

BACKGROUND: Precise teeth segmentation from dental panoramic X-ray images is an important task in dental practice. However, several issues including poor image contrast, blurring borders of teeth, presence of jaw bones and other mouth elements, makes reading and examining such images a challenging and time-consuming task for dentists. Thus, developing a precise and automated segmentation technique is required. OBJECTIVE: This study aims to develop and test a novel multi-fusion deep neural net consisting of encoder-decoder architecture for automatic and accurate teeth region segmentation from panoramic X-ray images. METHODS: The encoder has two different streams based on CNN which include the conventional CNN stream and the Atrous net stream. Next, the fusion of features from these streams is done at each stage to encode the contextual rich information of teeth. A dual-type skip connection is then added between the encoder and decoder to minimise semantic information gaps. Last, the decoder comprises deconvolutional layers for reconstructing the segmented teeth map. RESULTS: The assessment of the proposed model is performed on two different dental datasets consisting of 1,500 and 1,000 panoramic X-ray images, respectively. The new model yields accuracy of 97.0% and 97.7%, intersection over union (IoU) score of 91.1% and 90.2%, and dice coefficient score (DCS) of 92.4% and 90.7% for datasets 1 and 2, respectively. CONCLUSION: Applying the proposed model to two datasets outperforms the recent state-of-the-art deep models with a relatively smaller number of parameters and higher accuracy, which demonstrates the potential of the new model to help dentists more accurately and efficiently diagnose dental diseases in future clinical practice.

Publisher

IOS Press

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3