Affiliation:
1. Department of Electrical Engineering, Veer Surendra Sai University of Technology (VSSUT), Odisha, India
2. Department of Railroad and Electrical Engineering, Woosong University, Daejeon, Republic of Korea
3. Department of Electrical Engineering, National Institute of Technology (NIT), Raipur, Chattisgarh, India
Abstract
In this paper, two accurate hybrid islanding detection schemes are proposed based on Wavelet Transform and Stockwell transform (S-transform). The proposed methods use the potential of sequence voltage (negative) retrieved at the target Distributed Generation (DG) location of the distribution network under study. In one of the schemes, Discrete Wavelet transform (DWT) is applied to process the negative sequence voltage signal and for its decomposition, which is further used to extract six statistical features like energy, entropy, mean, kurtosis, standard deviation, and skewness from the reconstructed DWT coefficients. Test and train data sets are generated with the wide variation of loading conditions, and optimal features are chosen from the full feature set by forward feature selection method (FFS) during the training process by an artificial neural network (ANN). After that, the trained system is tested to get the detection result. Another scheme presented in this paper for islanding detection is based on S-transform, which is used to decompose the negative sequence voltage signal. Amplitude, frequency, and phase are the three coefficients acquired from the pre-processing of the raw signal by S-transform. Then the cumulative sums of the energy content of the S-transform coefficients are determined and are compared with a threshold value to get the detection result. The proposed schemes are tested in a distribution network consisting of two 9 MW wind farm driven by six 1.5 MW wind turbine connected to 120 kV main grid through a 25 kV, 30 km feeder. Several cases have been investigated like normal condition, islanding, DG line trip, disconnection of point of common coupling, and sudden change in load to test the performance of the proposed schemes. It can be observed from the results that both the approaches gave high accuracy in the detection of islanding conditions and demarcates properly from the non-islanding state. However, results show that the S-transform based approach provides a better resolution and quick detection of islanding than the wavelet transform approach.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献