Classification of arrhythmia’s ECG signal using cascade transparent classifier

Author:

Setiawan Noor Akhmad1,Nugroho Hanung Adi1,Persada Anugerah Galang1,Yuwono Tito2,Prasojo Ipin3,Rahmadi Ridho4,Wijaya Adi1

Affiliation:

1. Department of Electrical and Information Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia

2. Department of Electrical Engineering, Universitas Islam Indonesia, Yogyakarta, Indonesia

3. Department of Biomedical Engineering Technology, ITS PKU Muhammadiyah, Surakarta, Indonesia

4. Department of Informatics, Universitas Islam Indonesia, Yogyakarta, Indonesia

Abstract

Arrhythmia is an abnormality often encountered in patients with cardiac problems. The presence of arrhythmia can be detected by an electrocardiogram (ECG) test. Automatic observation based on machine learning has been developed for long time. Unfortunately, only few of them have capability of explaining the knowledge inside themselves. Thus, transparency is important to improve human understanding of knowledge. To achieve this goal, a method based on cascaded transparent classifier is proposed. Firstly, ECG signals were separated and every single signal was extracted using feature extraction method. Several of extracted feature’s attributes were selected, and the final step was classifying data using cascade classifier which consists of decision tree and the rule based classifier. Classification performance was evaluated with publicly available dataset, the MIT-BIH Physionet Dataset. The methods were tested using 10-fold cross validation. The average of both accuracy and number of rules generated was considered. The best result using rule-based classifier achieves the accuracy and the number of rules 92.40% and 40, respectively. And the best result using cascade classifier achieves the accuracy and the number of rules 92.84% and 80, respectively. As a conclusion, transparent classifier shows a competitive performance with reasonable accuracy compared with previous research and promising in addressing the need for interpretability model.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3