Affiliation:
1. School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
Abstract
Cloud computing is gaining ground in the digital and business world. It delivers storage service for user access using Internet as a medium. Besides the numerous benefits of cloud services, migrating to public cloud storage leads to security and privacy concerns. Encryption method protects data privacy and confidentiality. However, encrypted data stored in cloud storage reduces the flexibility in processing data. Therefore, the development of new technologies to search top representatives from encrypted public storage is the current requirement. This paper presents a similarity-based keyword search for multi-author encrypted documents. The proposed Authorship Attribute-Based Ranked Keyword Search (AARKS) encrypts documents using user attributes, and returns ranked results to authorized users. The scheme assigns weight to index vectors by finding the dominant keywords of the specific authority document collection. Search using the proposed indexing prunes away branches and processes only fewer nodes. Re-weighting documents using the relevant feedback also improves user experience. The proposed scheme ensures the privacy and confidentiality of data supporting the cognitive search for encrypted cloud data. Experiments are performed using the Enron dataset and simulated using a set of queries. The precision obtained for the proposed ranked retrieval is 0.7262. Furthermore, information leakage to a cloud server is prevented, thereby proving its suitability for public storage.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability