Affiliation:
1. Collage of Automation Engineer, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Abstract
At present, the UAV swarm positioning solution has the problems of poor positioning accuracy and instability. Therefore, it is necessary to design a sliding mode formation controller to realize formation. This study analyzes the self-service control strategy of the UAV swarm and establishes the behavior-based formation control strategy as the main research point of this article. This paper combines the Internet of Things and artificial intelligence algorithms to build an autonomous control model for the UAV swarm and designs the UAV formation control law from the disturbed and undisturbed conditions respectively. With reference to the basic architecture of the Internet of Things, this study imitates ZigBee’s self-organizing network to propose an adaptive networking scheme based on the Internet of Things by using the AP+STA working mode of the Internet of Things module in the node device. The results of the experiment show that the positioning accuracy of the UAV is high, which can meet the needs of cluster flight. Based on the Z-axis coordinates of the UAV, the accuracy of the laser distance measurement and the barometer value is significantly improved, the root mean square error is reduced, and the positioning result is significantly better than the data of direct traditional positioning.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献