Real-time day ahead energy management for smart home using machine learning algorithm

Author:

Vasudevan Nisha1,Venkatraman Vasudevan2,Ramkumar A1,Sheela A3

Affiliation:

1. Department of Electrical and Electronics Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar District, Tamilnadu, India

2. Department of Computer Science Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Virudhunagar District, Tamilnadu, India

3. Department of Electrical and Electronics Engineering, Kongu Engineering College, Perundurai

Abstract

Smart grid is a sophisticated and smart electrical power transmission and distribution network, and it uses advanced information, interaction and control technologies to build up the economy, effectiveness, efficiency and grid security. The accuracy of day-to-day power consumption forecasting models has an important impact on several decisions making, such as fuel purchase scheduling, system security assessment, economic capacity generation scheduling and energy transaction planning. The techniques used for improving the load forecasting accuracy differ in the mathematical formulation as well as the features used in each formulation. Power utilization of the housing sector is an essential component of the overall electricity demand. An accurate forecast of energy consumption in the housing sector is quite relevant in this context. The recent adoption of smart meters makes it easier to access electricity readings at very precise resolutions; this source of available data can, therefore, be used to build predictive models., In this study, the authors have proposed Prophet Forecasting Model (PFM) for the application of forecasting day-ahead power consumption in association with the real-time power consumption time series dataset of a single house connected with smart grid near Paris, France. PFM is a special type of Generalized Additive Model. In this method, the time series power consumption dataset has three components, such as Trend, Seasonal and Holidays. Trend component was modelled by a saturating growth model and a piecewise linear model. Multi seasonal periods and Holidays were modelled with Fourier series. The Power consumption forecasting was done with Autoregressive Integrated Moving Average (ARIMA), Long Short Term Neural Memory Network (LSTM) and PFM. As per the comparison, the improved RMSE, MSE, MAE and RMSLE values of PFM were 0.2395, 0.0574, 0.1848 and 0.2395 respectively. From the comparison results of this study, the proposed method claims that the PFM is better than the other two models in prediction, and the LSTM is in the next position with less error.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3