Affiliation:
1. School of Sports Sciences and Physical Education of Nantong University, Nantong, Jiangsu, China
Abstract
The comprehensive indicators of the physical fitness of young athletes and the specific modes of transportation, working and leisure activities as explanatory variables are not in line with the normal distribution. Moreover, there is a high correlation between explanatory variables, and fitting traditional regression models does not meet the assumptions, and multiple collinearity problems will occur, and good results will not be obtained. The random forest regression model has excellent performance in overcoming these difficulties. Therefore, the random forest regression model is constructed to evaluate the impact of various factors on the physical fitness of young people. This paper studies the impact of various factors on the health level of young people’s body and combines the source data and research goals to establish a comprehensive evaluation index system and an influential factor indicator system. In addition, this paper uses AHP to conduct comprehensive evaluation, and obtains the comprehensive physical quality of young people, and gives corresponding suggestions according to the actual situation.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献