A new hybrid model combining EMD and neural network for multi-step ahead load forecasting

Author:

Malik Hasmat1,Alotaibi Majed A.23,Almutairi Abdulaziz4

Affiliation:

1. BEARS, University Town, NUS Campus, Singapore

2. Department of Electrical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia

3. Saudi Electricity Company Chair in Power System Reliability and Security, King Saud University, Riyadh, Saudi Arabia

4. Deparment of Electrical Engineering, College of Engineering, Majmaah University, Riyadh, Saudi Arabia

Abstract

The electric load forecasting (ELF) is a key area of the modern power system (MPS) applications and also for the virtual power plant (VPP) analysis. The ELF is most prominent for the distinct applications of MPS and VPP such as real-time analysis of energy storage system, distributed energy resources, demand side management and electric vehicles etc. To manage the real-time challenges and map the stable power demand, in different time steps, the ELF is evaluated in yearly, monthly, weekly, daily, and hourly, etc. basis. In this study, an intelligent load predictor which is able to forecast the electric load for next month or day or hour is proposed. The proposed approach is a hybrid model combining empirical mode decomposition (EMD) and neural network (NN) for multi-step ahead load forecasting. The model performance is demonstrated by suing historical dataset collected form GEFCom2012 and GEFCom2014. For the demonstration of the performance, three case studies are analyzed into two categories. The demonstrated results represents the higher acceptability of the proposed approach with respect to the standard value of MAPE (mean absolute percent error).

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3