Affiliation:
1. School of Electrical and Electronics, Sathyabama Institute of Science and Technology, Chennai
Abstract
Diabetes is one of the chronic metabolic disorder. Under diabetic condition, blood glucose level should be properly maintained in order to avoid various major diseases. The condition will be worse when it is not controlled at an earlier stage. Even massive heart attack cannot be identified when the patient has been affected by diabetes. Early diagnosis is required for preventing fatal diseases like cardiac problem, asthma, heart attack etc. In the proposed system measurement of glucose level and Prediction/ diagnosis of diabetes is based on the real time low complexity neural network implemented on a wearable device. A larger network is required for the diagnosis which needs to be present far-off in cloud and initiated for diagnosis and classification process of diabetes whenever it is essential. People can be able to manage and monitor the required basic parameters like heart rate, glucose level, lung condition, pressure of blood using the corresponding light weight biosensors in the wearable device designed through telemedicine technology. The quality of the disease diagnosis and Prediction is improved in this way. Using neural network feed forward prediction model in conjugation with back propagation algorithm and given training data, the system predicts whether the patient is prone to diabetes or not. The proposed work was evaluated using physic sensor data from physio net data base and also tested for real time functioning. The Proposed system found to be efficient in accuracy, sensitivity and fast operative.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献