Affiliation:
1. Department of Science Research, General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
Abstract
With the rapid development of evidence-based medicine, translational medicine, and pharmacoeconomics in China, as well as the country’s strong commitment to clinical research, the demand for physicians’ research continues to increase. In recent years, real-world studies are attracting more and more attention in the field of health care, as a method of post-marketing re-evaluation of drugs, RWS can better reflect the effects of drugs in real clinical settings. In the past, it was difficult to ensure data quality and efficiency of research implementation because of the large sample size required and the large amount of medical data involved. However, due to the large sample size required and the large amount of medical data involved, it is not only time-consuming and labor-intensive, but also prone to human error, making it difficult to ensure data quality and efficiency of research implementation. This paper analyzes and summarizes the existing application systems of big data analytics platforms, and concludes that big data research analytics platforms using natural language processing, machine learning and other artificial intelligence technologies can help RWS to quickly complete the collection, integration, processing, statistics and analysis of large amounts of medical data, and deeply mine the intrinsic value of the data, real-world research in new drug development, drug discovery, drug discovery, drug discovery, and drug discovery. It has a broad application prospect for multi-level and multi-angle needs such as economics, medical insurance cost control, indications/contraindications evaluation, and clinical guidance.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability