Multi-modal medical image fusion using LMF-GAN - A maximum parameter infusion technique

Author:

Nair Rekha R.1,Singh Tripty1,Sankar Rashmi1,Gunndu Klement1

Affiliation:

1. Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru, India

Abstract

 The multi-sensor, multi-modal, composite design of medical images merged into a single image, contributes to identifying features that are relevant to medical diagnoses and treatments. Although, current image fusion technologies, including conventional and deep learning algorithms, can produce superior fused images, however, they will require huge volumes of images of various modalities. This solution may not be viable for some situations, where time efficiency is expected or the equipment is inadequate. This paper addressed a modified end-to-end Generative Adversarial Network(GAN), termed Loss Minimized Fusion Generative Adversarial Network (LMF-GAN), a triple ConvNet deep learning architecture for the fusion of medical images with a limited sampling rate. The encoding network is combined with a convolutional neural network layer and a dense block called GAN, in contrast to conventional convolutional networks. The loss is minimized by training GAN’s discriminator with all the source images by learning more parameters to generate more features in the fused image. The LMF-GAN can produce fused images with clear textures through adversarial training of the generator and discriminator. The proposed fusion method has the ability to achieve state-of-the-art quality in objective and subjective evaluation, in comparison with current fusion methods. The model has experimented with standard data sets.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foundations of Generative AI;Advances in Computational Intelligence and Robotics;2024-06-28

2. Covid-19 Classification using Fine-tuned EfficientNet Architecture;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

3. Natural Language Processing for Sentiment Analysis with Deep Learning;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

4. Image registration for 3D medical images;Advances in Computers;2024

5. Various Multimodal Image Fusion Analyses Using Discrete Wavelets Transform and Gray Wolf Optimization;2023 IEEE 23rd International Conference on Bioinformatics and Bioengineering (BIBE);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3