An intelligent system to identify coal maceral groups using markov-fuzzy clustering approach

Author:

Alpana 1,Chand Satish1,Mohapatra Subrajeet2,Mishra Vivek3

Affiliation:

1. School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India

2. Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

3. Hebei Collaborative Innovation Center of Coal Exploitation, Hebei University of Engineering, Hebei, China

Abstract

Coal is the mixture of organic matters, called as macerals, and inorganic matters. Macerals are categorized into three major groups, i.e., vitrinite, inertinite, and liptinite. The maceral group identification serves an important role in coking and non-coking coal processes that are used mainly in steel and iron industries. Hence, it becomes important to efficiently characterize these maceral groups. Currently, industries use the optical polarized microscope to distinguish the maceral groups. However, the microscopical analysis is a manual method which is time-consuming and provides subjective outcome due to human interference. Therefore, an automated approach that can identify the maceral groups accurately in less processing time is strongly needed in industries. Computer-based image analysis methods are revolutionizing the industries because of its accuracy and efficacy. In this study, an intelligent maceral group identification system is proposed using markov-fuzzy clustering approach. This approach is an integration of fuzzy sets and the markov random field, which is employed towards maceral group identification in a clustering framework. The proposed model shows better results when compared with the standard cluster-based segmentation techniques. The results from the suggested model have also been validated against the outcome of manual methods, and the feasibility is tested using performance metrics.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3