A novel artificial intelligence model for color image quality assessment for security enhanement weighted by visual saliency

Author:

Chen Zhongshan1,Zhang Shengwei1,Zhang Juxiao1,Hu Zuojin1,Han Xue1,Xu Mengyang2

Affiliation:

1. School of Mathematics and Information Science, Nanjing Normal University of Special Education, Nanjing, China

2. College of Art and Design, Nanjing Normal University of Special Education, Nanjing, China

Abstract

Artificial Intelligence (AI) is the enhancement and method of computer system that handles tasks which requires human like intelligence such as recognition, language translation and visual interpretation. Subjective image quality assessment (IQA) is difficult to be implemented in real-time systems, methodology for enhancing the involvement in producing IQA model is to improve the quality of image by significant evaluation. Intuitively, human eyes are not sensitive to the distortion and damage from the area with lesser visual saliency (VS), VS is closely related to IQA. With this consideration, an effective IQA was proposed, which involved two processes. The local quality map of a distorted image was computed using the structural similarity function of its feature attributes, such as brightness, chrominance and gradient. Second, the local quality map was weighted with visual saliency (VS) to get the objective evaluation of image quality. The VS was modeled by extracting the saliency of low-level features of the image, wiping off the molestation information from these saliency based on an apriori threshold, and combining the effective information to construct the saliency map. Image processing using fuzzy is gathering features and segments as fuzzy set while processing images. The experiments on the two largest database for six classical IQA metrics demonstrate that performance of weighted-VS IQA metrics is superior to the performance of no weighted-VS IQA metrics, and the proposed IQA method has higher computational accuracy than the other IQA metrics under a moderate computational complexity, especially for two types of distortion images, such as local block-wise (Block) and fast-fading (FTF).

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3