A New semi-supervised clustering for incomplete data

Author:

Goel Sonia12,Tushir Meena2

Affiliation:

1. Scholar, USICT, GGSIPU, Delhi, India

2. Department of Electrical and Electronics Engineering, MSIT, Delhi, India

Abstract

Semi-supervised clustering technique partitions the unlabeled data based on prior knowledge of labeled data. Most of the semi-supervised clustering algorithms exist only for the clustering of complete data, i.e., the data sets with no missing features. In this paper, an effort has been made to check the effectiveness of semi-supervised clustering when applied to incomplete data sets. The novelty of this approach is that it considers the missing features along with available knowledge (labels) of the data set. The linear interpolation imputation technique initially imputes the missing features of the data set, thus completing the data set. A semi-supervised clustering is now employed on this complete data set, and missing features are regularly updated within the clustering process. In the proposed work, the labeled percentage range used is 30, 40, 50, and 60% of the total data. Data is further altered by arbitrarily eliminating certain features of its components, which makes the data incomplete with partial labeling. The proposed algorithm utilizes both labeled and unlabeled data, along with certain missing values in the data. The proposed algorithm is evaluated using three performance indices, namely the misclassification rate, random index metric, and error rate. Despite the additional missing features, the proposed algorithm has been successfully implemented on real data sets and showed better/competing results than well-known standard semi-supervised clustering methods.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference24 articles.

1. Bache K. and Lichman M. , UCI Machine Learning Repository Irvine, CA: University of California, School of Information and Computer Science 28 (2013). http://archive.ics.uci.edu/ml.

2. Partially supervised clustering for image segmentation;Bensaid;, Pattern Recognition,1996

3. Nearest neighbor imputation algorithms: a critical evaluation;Beretta;BMC Medical Informatics and Decision Making,2016

4. Data clustering with partial supervision;Bouchachia;Data Mining and Knowledge Discovery,2006

5. Pattern recognition with partly missing data;Dixon;, IEEE Transactions on Systems Man and Cybernetics,1979

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3