Motion Behavior and Range of Motion when Using Exoskeletons in Manual Assembly Tasks

Author:

Perez Luque Estela1,Högberg Dan1,Iriondo Pascual Aitor1,Lämkull Dan2,Garcia Rivera Francisco1

Affiliation:

1. School of Engineering Science, University of Skövde, Skövde, Sweden

2. Global Strategy & Process Development, Volvo Cars, Gothenburg, Sweden

Abstract

Although the automation level is high within the automotive industry, there are still a large number of manual tasks, especially is the final assembly of the vehicle. Overhead assembly operations is an example of a problematic manual task that can cause workers to develop musculoskeletal disorders in the shoulder complex. Exoskeletons may be a solution to reduce the risk for developing musculoskeletal disorders from the work tasks. This study evaluates and compares how the use of three different passive upper body exoskeletons affects the range of motion (ROM) of workers at overhead assembly tasks. An experiment consisting of three tasks was set up in order to analyze the differences between the models. Seventeen subjects were involved in the study. Interviews, observations, videos and motion capture recordings were the methods of collecting data. The results show agreement from all the subjects that the exoskeletons help the worker at this specific assembly operation. The results also show that different exoskeleton models cause different levels of ROM reductions. The subjects’ opinions about how the different exoskeletons influence the ROM corresponds with the analysis of the motion capture data. Positive and negative aspects of each exoskeleton from a ROM and an implementation point of view are discussed. In general, the results indicate that the exoskeleton models can be applicable for the type of work tasks studied. However, the exoskeletons would benefit from further development in order to decrease ROM limitations and therefore cover a larger number of different manual assembly tasks.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3