Survival Analysis in Cognitively Normal Subjects and in Patients with Mild Cognitive Impairment Using a Proportional Hazards Model with Extreme Gradient Boosting Regression

Author:

Khajehpiri Boshra1,Moghaddam Hamid Abrishami1,Forouzanfar Mohamad12,Lashgari Reza3,Ramos-Cejudo Jaime4,Osorio Ricardo S.54,Ardekani Babak A.5,

Affiliation:

1. Machine Vision and Medical Image Processing (MVMIP) Laboratory, Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran

2. Department of Systems Engineering, École deTechnologie Supérieure, Université du Québec, Montreal, Quebec, Canada

3. Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran

4. Department of Psychiatry, New York University (NYU) Grossman School of Medicine, New York, NY, USA

5. The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA

Abstract

Background: Evaluating the risk of Alzheimer’s disease (AD) in cognitively normal (CN) and patients with mild cognitive impairment (MCI) is extremely important. While MCI-to-AD progression risk has been studied extensively, few studies estimate CN-to-MCI conversion risk. The Cox proportional hazards (PH), a widely used survival analysis model, assumes a linear predictor-risk relationship. Generalizing the PH model to more complex predictor-risk relationships may increase risk estimation accuracy. Objective: The aim of this study was to develop a PH model using an Xgboost regressor, based on demographic, genetic, neuropsychiatric, and neuroimaging predictors to estimate risk of AD in patients with MCI, and the risk of MCI in CN subjects. Methods: We replaced the Cox PH linear model with an Xgboost regressor to capture complex interactions between predictors, and non-linear predictor-risk associations. We endeavored to limit model inputs to noninvasive and more widely available predictors in order to facilitate future applicability in a wider setting. Results: In MCI-to-AD (n = 882), the Xgboost model achieved a concordance index (C-index) of 84.5%. When the model was used for MCI risk prediction in CN (n = 100) individuals, the C-index was 73.3%. In both applications, the C-index was statistically significantly higher in the Xgboost in comparison to the Cox PH model. Conclusion: Using non-linear regressors such as Xgboost improves AD dementia risk assessment in CN and MCI. It is possible to achieve reasonable risk stratification using predictors that are relatively low-cost in terms of time, invasiveness, and availability. Future strategies for improving AD dementia risk estimation are discussed.

Publisher

IOS Press

Subject

Psychiatry and Mental health,Geriatrics and Gerontology,Clinical Psychology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3