ICIPEMIR: Improving the Completeness, Interoperability and Patient Explanations of Medical Imaging Reports

Author:

Lauriot Dit Prevost Arthur12,Trencart Marie12,Gaillard Vianney3,Bouzille Guillaume4,Besson Rémi12,Sharma Dyuti12,Puech Philippe3,Chazard Emmanuel1

Affiliation:

1. Univ. Lille, CHU Lille, ULR 2694 METRICS, F-59000 Lille, France

2. CHU Lille, Clinique de Chirurgie et Orthopédie de l’Enfant, F-59000 Lille, France

3. Univ. Lille, Inserm, CHU Lille, U1189 – ONCO-THAI, F-59000 Lille, France

4. Univ Rennes, CHU Rennes, Inserm, LTSI – UMR 1099, F-35000 Rennes, France

Abstract

Introduction: Although electronic health records have been facilitating the management of medical information, there is still room for improvement in daily production of medical report. Possible areas for improvement would be: to improve reports quality (by increasing exhaustivity), to improve patients’ understanding (by mean of a graphical display), to save physicians’ time (by helping reports writing), and to improve sharing and storage (by enhancing interoperability). We set up the ICIPEMIR project (Improving the completeness, interoperability and patients explanation of medical imaging reports) as an academic solution to optimize medical imaging reports production. Such a project requires two layers: one engineering layer to build the automation process, and a second medical layer to determine domain-specific data models for each type of report. We describe here the medical layer of this project. Methods: We designed a reproducible methodology to identify -for a given medical imaging exam- mandatory fields, and describe a corresponding simple data model using validated formats. The mandatory fields had to meet legal requirements, domain-specific guidelines, and results of a bibliographic review on clinical studies. An UML representation, a JSON Schema, and a YAML instance dataset were defined. Based on this data model a form was created using Goupile, an open source eCRF script-based editor. In addition, a graphical display was designed and mapped with the data model, as well as a text template to automatically produce a free-text report. Finally, the YAML instance was encoded in a QR-Code to allow offline paper-based transmission of structured data. Results: We tested this methodology in a specific domain: computed tomography for urolithiasis. We successfully extracted 73 fields, and transformed them into a simple data model, with mapping to a simple graphical display, and textual report template. The offline QR-code transmission of a 2,615 characters YAML file was successful with simple smartphone QR-Code scanner. Conclusion: Although automated production of medical report requires domain-specific data model and mapping, these can be defined using a reproducible methodology. Hopefully this proof of concept will lead to a computer solution to optimize medical imaging reports, driven by academic research.

Publisher

IOS Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3