Research on computer network information security based on improved machine learning

Author:

Guangxu Yu1

Affiliation:

1. Henan Institute of Economics and Trade, Zhengzhou, China

Abstract

The 21st century is an era of rapid development of the Internet. Internet technology is widely used in various fields. With the rapid development of network, the importance of network information security is also highlighted. The traditional network information security technology has been difficult to ensure the security of network information. Therefore, we mainly study the application of machine learning feature extraction method in situational awareness system. A feature selection method based on machine learning is proposed to extract situational features.By analyzing whether the background of network information is safe or not, and according to the current research situation at home and abroad and the trend of Internet development, this paper tries out the practical application of machine learning feature extraction method in a certain perception system. Based on the above points, a selection method based on machine learning is proposed to extract situational features. The accuracy and timeliness of situational awareness system detection are seriously affected by the high dimension, noise and redundant features of massive network traffic data.Therefore, it is of great value to further study network intrusion detection technology on the basis of machine learning.

Publisher

IOS Press

Subject

Artificial Intelligence,General Engineering,Statistics and Probability

Reference24 articles.

1. Wunnava S.V. , Rassi E. , Data encryption performance and evaluation schemes, Southeast Con, 2002. Columbia: IEEE press, 2002, 234–238.

2. Situation awareness in applications of ambient assisted living for cognitive impaired people;Coronato;Mobile Networks and Applications,2013

3. Situation awareness in aviation systems;Endsley;British Journal of Occupational Therapy,1999

4. Design and evaluation for situation awareness enhancement;Endsley;Proceeding of the 32nd Human Factors Society Annual Meeting. Santa Monica: Human Factors and Ergonomics Society,1988

5. Feature based unsupervised intrusion detection;Mahmood;Waset Org,2014

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3