Affiliation:
1. KCG College of Technology, Karappakam, Chennai, Tamil Nadu, India
Abstract
Cognitive computing is the mirroring of human brain and this is made possible by using natural language processing, pattern recognition and data mining. By mirroring the human brain (Cognitive computing system), helps to solve some of the complicated problems without much of human supervision. In the fast-changing world, the major challenge every organization facing is difficulty in retaining its employees. Employees may leave an organization due to low salary, overwork, lack of opportunities and recognition, work culture, work-life imbalance etc. Better ways to retain employees is to understand their requirements and fulfill them. The proposed employee feedback sentiment analysis system collects the employee feedback reviews from open forums and perform sentiment analysis using Recurrent Neural Network – Long Short-term Memory (RNN-LSTM) algorithm. On performing Sentiment analysis, employee review comments are classified as Positive or Negative. A report is generated and sent to the HR of the organization as webapp or mobile app. The report has total number of positive and negative comments and positive and negative counts with respect to salary, work pressure etc. With the report, the organization can arrive at identifying social sentiments of their brand and may take corrective actions to retain employees which benefits both organization and employees. This paper also captures the performance of various models in training and predicting the employee feedback dataset and the models evaluated are Logistic Regression, Support Vector Machine, Random Forest Classifier, AdaBoost Classifier, Gradient Boosting Classifier, Decision Tree Classifier and Gaussian Naïve Bayes. The classification report and accuracy of each model is captured. The dataset size was gradually increased from 200 to 1000 and accuracy was predicted for each model. It was identified that the accuracy of machine learning algorithms was ranging between 66% to 85%. On training RNN-LSTM algorithm with dataset of size 30 k, the accuracy was 88%. It was identified that Deep learning algorithm RNN-LSTM performs better with huge dataset. Increasing dataset size still increase the performance of RNN-LSTM algorithm in training and prediction. Thus, the objective function of the proposed model to perform sentiment analysis on employee feedback review comments is achieved successfully.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Design of Web-Based Agile Meeting Dashboard;Lecture Notes in Electrical Engineering;2023
2. Interactive Translation System of Intelligent Fuzzy Decision Tree Algorithm (IFDTA);Proceedings of the 4th International Conference on Big Data Analytics for Cyber-Physical System in Smart City - Volume 1;2023
3. Best Fit Player Acquisition and Squad Personnel System in Football for Sports;2022 1st International Conference on Computational Science and Technology (ICCST);2022-11-09
4. An Intelligent Automated System for Porter Services in India;2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES);2022-07-15
5. Cloud-Based Glaucoma Diagnosis in Medical Imaging Using Machine Learning;Artificial Intelligence for Innovative Healthcare Informatics;2022