Inequalities for space-bounded Kolmogorov complexity

Author:

Bauwens Bruno1ORCID,Gács Peter2ORCID,Romashchenko Andrei3ORCID,Shen Alexander3ORCID

Affiliation:

1. National Research University Higher School of Economics, Russia

2. Boston University, USA

3. LIRMM, University of Montpellier, CNRS, Montpellier, France and IITP RAS, Moscow (on leave)

Abstract

Finding all linear inequalities for entropies remains an important open question in information theory. For a long time the only known inequalities for entropies of tuples of random variables were Shannon (submodularity) inequalities. Only in 1998 Zhang and Yeung 1998 found the first inequality that cannot be represented as a convex combination of Shannon inequalities, and several other non-Shannon inequalities were found soon after that. It turned out that the class of linear inequalities for entropies is rather fundamental, since the same class can be equivalently defined in terms of subgroup sizes or projections of multidimensional sets (Chan 2001, Chan, Yeung 2002, Romashchenko, Shen, Vereshchagin 2000). The non-Shannon inequalities have interesting applications (e.g., to proofs of lower bounds for the information ratio of secret sharing schemes). Still the class of linear inequalities for entropies is not well understood, though some partial results are known (e.g., Matúš has shown in 2007 that this class cannot be generated by a finite family of inequalities). This class also appears in algorithmic information theory: the same linear inequalities are true for Shannon entropies of tuples of random variables and Kolmogorov complexities of tuples of strings (Hammer et al., 1997). This parallelism started with the Kolmogorov–Levin formula 1968 for the complexity of pairs of strings with logarithmic precision. Longpré proved in 1986 a version of this formula for the space-bounded complexities. In this paper we prove a stronger version of Longpré’s result with a tighter space bound, using Sipser’s trick 1980. Then, using this result, we show that every linear inequality that is true for complexities or entropies, is also true for space-bounded Kolmogorov complexities with a polynomial space overhead, thus extending the parallelism to the space-bounded algorithmic information theory.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3