Characterizing time computational complexity classes with polynomial differential equations

Author:

Gozzi Riccardo12,Graça Daniel32

Affiliation:

1. Instituto Superior Técnico, Universidade de Lisboa, Portugal

2. Instituto de Telecomunicações, Portugal

3. Universidade do Algarve, Portugal

Abstract

In this paper we show that several classes of languages from computational complexity theory, such as EXPTIME, can be characterized in a continuous manner by using only polynomial differential equations. This characterization applies not only to languages, but also to classes of functions, such as the classes defining the Grzegorczyk hierarchy, which implies an analog characterization of the class of elementary computable functions and the class of primitive recursive functions.

Publisher

IOS Press

Subject

Artificial Intelligence,Computational Theory and Mathematics,Computer Science Applications,Theoretical Computer Science

Reference25 articles.

1. The General Purpose Analog Computer and Computable Analysis are Two Equivalent Paradigms of Analog Computation

2. Polynomial differential equations compute all real computable functions on computable compact intervals;Bournez;Journal of Complexity,2007

3. O. Bournez, D.S. Graça and A. Pouly, Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length – the general purpose analog computer and computable analysis are two efficiently equivalent models of computations, in: Proc. 43rd International Colloquium on Automata, Languages and Programming (ICALP 2016), I. Chatzigiannakis, M. Mitzenmacher, Y. Rabani and D. Sangiorgi, eds, Leibniz International Proceedings in Informatics (LIPIcs), Vol. 55, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016, pp. 109:1–109:15.

4. Computing with polynomial ordinary differential equations;Bournez;Journal of Complexity,2016

5. Polynomial time corresponds to solutions of polynomial ordinary differential equations of polynomial length;Bournez;Journal of the ACM,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3